Формирующий эксперимент

Страница 4

б). Задачи на установление числа осей (плоскостей, центров) симметрии.

Пример 1. Найти множество осей симметрии у двух данных точек М и Р на плоскости и в пространстве.

Пример 2. Сколько плоскостей симметрии имеет а) куб, б) цилиндр?

Пример 3. Приведите пример фигуры, имеющей более одного центра симметрии.

в). Задачи на построение осей (центров, плоскостей) симметрии или фигур имеющих оси (центры, плоскости) симметрии.

Пример 1. Начертите два угла, таких, что один из них может быть получен из другого с помощью центральной симметрии.

Пример 2. Отметьте три точки А, В, С. Дополните это множество четвертой точкой D так, чтобы фигура Ф = {A, B, C, D} имела а) центр симметрии; б) ось симметрии. Рассмотрите все возможные случаи.

Пример 3. Будет ли фигура, являющаяся объединением полосы и прямой, не принадлежащей ей, иметь центр симметрии? Рассмотрите все возможные случаи.

г). Задачи на создание новых образов пространственных объектов путем геометрических преобразований исходных.

Пример. В прямоугольнике ABCD мысленно проведите прямую АК (К - середина стороны ВС), представьте, что прямоугольник разрезан по ней и треугольник АВК повернут вокруг точки К так, что ВК и КС совместились. В какую фигуру превратиться прямоугольник?

IV. Упражнения на конструирование и моделирование новых образов геометрических объектов

Задания данной группы предполагают выполнение мысленного или графического реконструирования и моделирования образ пространственных объектов.

Пример. Нарисуйте фигуру, получающуюся в пересечении двух равных цилиндров, оси которых пересекаются под прямым углом?

В процессе решения таких задач осуществляется конструирование качественно новых пространственных образов и новых отношений между ними, формируются и совершенствуются умения мысленно преобразовывать исходный образ по форме, величине, пространственному положению, то есть, их решение требует активного оперирования пространственными образами и высокого уровня развития пространственных представлений и воображения.

Совокупность данных упражнений можно рассматривать как одно из средств развития пространственных представлений учащихся в процессе изучения геометрии.

Методику формирования пространственного образа геометрического объекта при помощи информационных технологий рассмотрим на примере изучения тел вращения.

Первые два занятия были посвящены изучению темы «Цилиндр». Эти уроки проводились в соответствии с программой, но на каждом уроке использовалась презентация по данной теме. На них были изучены основные понятия и определения, связанные с цилиндром, выведены формулы для вычисления площадей боковой и полной поверхностей цилиндра; рассмотрены типовые и более сложные задачи по изучаемой теме. [см. Приложение 1]

Далее в течение четырех уроков изучалась тема «Конус». Обучение происходило по той же схеме, что и тема «Цилиндр», а так же здесь был изучен усеченный конус и все определения и формулы, связанные с ним. Были решены задачи, как простейшие, так и более сложные. [ см. Приложение 2]

После чего изучалась тема «Сфера. Шар» (4 часа). [ см. Приложение 3]

В процессе изучения тем «Цилиндр», «Конус» и «Сфера. Шар» нам удалось охватить весь объем теоретической информации. Нами были рассмотрены и отработаны задания на отработку основных умений и навыков, которые являются основными в процессе формирования пространственного воображения. При решении упражнений возникшие затруднения сразу устранялись по мере их возникновения и решались подобные задания на закрепление пройденного материала. Они были достаточно интересны и разнообразны по своему содержанию, отличались новизной формулировок, а также тем, что необходимо было логически мыслить при поиске ответа на поставленный вопрос. На каждом занятие были использованы информационные технологии. Занятия дали положительный результат по формированию умений:

Страницы: 1 2 3 4 5 6 7 8


Разложение степенной функции в биноминальный ряд
п.1 Производная степенной функции Для начала найдём производные от некоторых простейших функций. Пусть . Имеем то есть, производная есть постоянная величина, равная 1. Это очевидно, ибо - линейная функция и скорость её изменения постоянна. Если , то Пусть , тогда легко заметить закономерность в выражениях производных от степенной функции ...

Реализация принципов обучения в программе воспитания и обучения в ДОУ
Принципы воспитания и обучения — это исходные положения, определяющие характер деятельности педагога и детей. Успешность процесса обучения во многом зависит от положений, которыми руководствуется педагог в его организации. Данные положения или законы обучения получили в педагогике название – дидактические принципы. Впервые дидактические ...

Разделы

Copyright © 2024 - All Rights Reserved - www.proeducator.ru