Использование заданий исследовательского характера как средства развития исследовательской деятельности

Структура образования » Элементы исследовательской работы на уроках математики в начальной школе » Использование заданий исследовательского характера как средства развития исследовательской деятельности

Страница 2

• изменения результатов арифметических действий от изменения одного из компонентов (линия арифметических действий над числами);

• пропорциональная зависимость величин (цена, количество, стоимость; длины сторон прямоугольника, его площадь и др.) (линии величин и арифметических сюжетных задач). (1)

Так как ведущий метод индуктивный, то мы должны показать детям что рассмотрение частных случаев не всегда приводит в общим выводам.

Например, исследование с периметром и площадью. (Слайд)

Работа в этом направлении вносит вклад в функциональную пропедевтику, помогает детям накопить запас доступных функциональных зависимостей. Это создает основу для изучения идеи функции в основной школе и способствует развитию детей.

Игровые задания так же носят исследовательский характер, тогда в процессе игры у младших школьников возникает необходимость сосредоточиться на сути выполняемых вычислительных действий, исследовать их механизм. Игровые и занимательные задания исследовательского характера способствуют развитию таких качеств вычислительных умений, как осознанность, рациональность, действенность, правильность.

К числу таких заданий могут быть отнесены:

- фокусы с разгадыванием задуманных чисел, со скоростным сложением трех или пяти многозначных чисел, со скоростным умножением или делением некоторых чисел;

- задания с занимательными рамками и магическими квадратами;

- софизмы (например, доказательство того, что 2 + 2 = 5);

- игры типа «Кто первым получит 50» и т.п.

Такие игры и фокусы можно найти в книгах (6). Их исследовательский характер относится к разгадыванию способа выполнения фокуса или к выработке выигрышной стратегии игры.

Фокусы с разгадыванием задуманных чисел могут быть разного уровня сложности, который в основном определяется числами, набором и количеством выполняемых над ними действий. Простейшие фокусы включают 2-3 действия сложения и вычитания над числами в пределах 10, затем 20. Достаточно сложные фокусы предполагают действия с многозначными числами, например, одновременное сложение большого количества чисел или последовательное выполнение 5-6 разнородных действий. В одном фокусе может быть разгадано сразу несколько чисел, например, чей-то день, месяц и год рождения. Приведем примеры фокусов разного уровня сложности.

Фокус 1. Задумайте число, прибавьте к нему 14, к результату прибавьте 6, вычтите задуманное число. У вас получилось 20.

Формула для разгадывания фокуса:

а + 14 + 6 - а = 20. Ее можно проиллюстрировать на схематическом чертеже. Для обоснования можно воспользоваться доступными ученикам знаниями - сочетательным свойством сложения: а + 14 + 6 = = а + (14 + 6) = а + 20; а также взаимосвязью суммы и слагаемых: а + 20 - а = 20 (из суммы а + 20 вычли слагаемое а, получили другое слагаемое 20).

Фокус 2 (старинный фокус из главы «Об утешных неких действиях, через арифметику употребляемых» учебника «Арифметика» Л.Ф. Магницкого) (32) состоит в угадывании, у кого из восьми человек (n1), на каком пальце (n2), на каком суставе (n3) находится перстень. Загадывающий умножает на 2 номер человека, прибавляет 5, умножает результат на 5, прибавляет номер пальца, умножает результат на 10, прибавляет номер сустава и сообщает полученное число тому, кто отгадывает. Пусть перстень находится у четвертого человека (n1 = 4), надет на пятый палец (n2 = 5), на второй сустав (n3 = 5). Выполнив вычисления, приведенные в таблице, можно отгадать, у кого находится перстень.

Страницы: 1 2 3 4 5


Общение как неотъемлемая часть педагогического творчества
Очень важным компонентом педагогического творчества является способность преподавателя адаптировать особенности своей личности к определенной образовательной системе, а также вырабатывать навык общения и способность работать с учеником в творческом сотрудничестве. Если проанализировать педагогический процесс в целом, то он распадается на ...

Решение квадратных уравнений и неравенств с параметрами
Квадратные уравнения и неравенства - одни из важнейших понятий математики. В большинстве практических и научных задач, где какую - то величину нельзя непосредственно измерить или вычислить по готовой формуле, удается составить соотношение (или несколько соотношений), которым оно удовлетворяет. Так получают уравнение (или систему уравнени ...

Разделы

Copyright © 2024 - All Rights Reserved - www.proeducator.ru