Решение: Пусть прямая а принадлежит плоскости α. Выберем на прямой m произвольно точку М и проведем через нее и прямую а плоскость β (аксиома задания плоскости). Прямые m и а не пересекаются (по условию), тогда они либо параллельны (), либо скрещиваются (). Следовательно, прямыми, параллельными прямой m, будут только те, с помощью которых можно задать плоскость (при участии m).
2.06. Даны две скрещивающиеся прямые а и b (рис. 19). Через каждую точку прямой а проводится прямая, параллельная прямой b. Докажите, что все такие прямые лежат в одной плоскости. Как расположена эта плоскость по отношению к прямой b? Ответ обоснуйте.
Решение: Пусть m || b , , тогда m и а задают плоскость α. Возьмем в плоскости α прямую с || b. По признаку параллельности прямых: с || m, тогда они задают некоторую плоскость β. По условию , значит, они тоже задают плоскость, которая совпадает с α. Следовательно, все прямые, параллельные b и пересекающие а лежат в плоскости, которая в свою очередь параллельна b (по признаку параллельности прямой и плоскости).
2.07. В тетраэдре ABCD точки K, F, N и M – середины ребер соответственно AD, BD, BC и AC (рис. 20). Заполните таблицу, выбрав (обведя в кружок) определенное вами расположение указанных прямой и плоскости: А – пересекаются, Б – параллельны, В – прямая лежит в плоскости, Г – невозможно определить:
Прямая и плоскость |
Взаимное расположение | |
1 |
BD и AMN |
А Б В Г |
2 |
MN и ABC |
А Б В Г |
3 |
KC и DMN |
А Б В Г |
4 |
MN и ABD |
А Б В Г |
5 |
KF и DMN |
А Б В Г |
6 |
FN и KMF |
А Б В Г |
7 |
CF и AND |
А Б В Г |
8 |
FN и DMK |
А Б В Г |
3.01. Сделайте чертеж: Плоскости α и β имеют общую прямую а, плоскости α и γ – общую прямую b, а плоскости β и γ – общую прямую с. Прямые а и b параллельны (рис. 21).
3.02. Сделайте чертеж: Плоскости α и β имеют общую прямую а, плоскости α и γ – общую прямую b, а плоскости β и γ параллельны (рис. 22).
3.03. Сделайте чертеж: Сторона ВС треугольника АВС лежит на плоскости α. Через вершину А и точку М – середину стороны АС – проведены соответственно плоскости β и γ, пересекающие плоскость ∆АВС по прямым АК и МТ (рис. 23).
3.04. В тетраэдре РАВС проведено сечение А1В1Р1, параллельное грани АВР. Определите взаимное расположение медиан РЕ и Р1Е1 треугольников соответственно АВР и А1В1Р1 (рис. 24).
Решение: Рассмотреть 3 случая взаимного расположения прямых в пространстве: параллельность, пересечение, скрещивание. Итог: РЕ || Р1Е1.
Проблемы усвоения мужской половой роли
В этом смысле мальчик находится в значительно менее благоприятной ситуации, чем девочка. Так, мать традиционно проводит с маленьким ребенком гораздо больше времени. Отца же ребенок видит намного реже, не в таких значимых ситуациях, поэтому обычно в глазах младенца он является менее привлекательным объектом. В связи с этим как для девочки ...
Функции общения
В настоящее время распространен подход, согласно которому в общении рассматриваются коммуникативная, интерактивная и перцептивная стороны. Существенно, что все эти стороны общения проявляются одновременно. Коммуникативная сторона реализуется в обмене информацией, интерактивная — в регуляции взаимодействия партнеров общения при условии од ...