Существующее положение дел в усвоении норм логического мышления не может считаться удовлетворительным в массовой школе, т. к. многие учащиеся, выпускники школ допускают многочисленные логические ошибки при определении понятий, их классификации, путают прямую и обратную теоремы, свойства и признаки понятий, не умеют подводить под определение, не умеют строить отрицания высказываний и т. д. Приведем примеры типичных ошибок учащихся. Например, при обосновании, что треугольник со сторонами 3,4,5 является прямоугольным, называется теорема Пифагора, а не ей обратная. При определении понятий неверно указывается родовое понятие: «Диаметр- прямая, проходящая через центр окружности». Неверно или не полостью указываются видовые отличия: «Параллелограмм – это такой четырехугольник, у которого боковые стороны равны». Отсутствует родовое понятие или видовое отличие: «Средняя линия трапеции - это отрезок», «Параллелограмм - это когда стороны параллельны». Формулировки определений избыточны: Равнобедренный треугольник - это треугольник, в котором стороны, лежащие против равных углов, равны».
Учащиеся путают определение понятия, признак, свойство. Вместо признака, требуемого при решении задачи, приводится определение или свойство, вместо определения - признак и т.д.
Многочисленные ошибки наблюдаются при установлении связи между понятиями, при классификации понятий, при выяснений, которая из двух теорем является следствием другой. Пример неверной классификации: «Прямые в пространстве могут быть параллельными, перпендикулярными, пересекающимися, скрещивающимися». И т. д.
Как можно видеть, существует необходимость в процессе обучения обращать специальное внимание на развитие логического мышления. В Настоящем пособии тема развития логического мышления учащимся рассматривается после того, как основные Опросы курса методики изучены. Представляется, что когда предмет методики преподавания математики лишь начинается, Цели развития логического мышления при обучении математике могут быть лишь обозначены примерно в том плане, как это сдельно в программе по математике.
По мере изучения вопросов общей и частных методик проблема развития логического мышления раскрывается более детально. Требования к формулировкам определений понятий, к построению доказательств и т. д. рассматриваются в соответствующих темах. Однако разрозненные сведения необходимо систематизировать, обобщить, углубить, довести до такого уровня, чтобы постанова целей развития логического мышления, постановка соответствующих учебных задач не представляла бы трудностей.
Почему проблема развития логического мышления чаще всего поднимается в школьном курсе математики? Существуют методические работы по развитию мышления, в том числе и логического, в школьных курсах русского языка, истории и т. д. В русском языке, чтобы оградить себя от возможных грамматических ошибок, приходится постоянно рассуждать логически. Логически мыслить можно учить через любую науку, любой школьный предмет. Но на школьную математику в этом плане ложится самая большая нагрузка. Ни в одном школьном предмете нет цепочек получения новых суждений, т. е. нет сложных формальных доказательств. В других школьных предметах доказательства фрагментарны, состоят из одного-двух шагов. Наличие многошаговых доказательств - одно из проявлений специфики математики - науки и школьного предмета. Отсутствие полноценного школьного курса математики существенно отражается на логическом, и, соответственно, на общем развитии человека.
Особую актуальность проблема развития логического мышления приобретает в связи с реализацией идей гуманизации и гуманитаризации школьного математического образования.
Особенности обучения письму в модели Н.Ф. Виноградовой
В педагогике и методике начального обучения за последние годы прочно утвердилась личностно- и деятельностно-ориентированная направленность всего учебно-воспитательного процесса. Подобное изменение образовательных векторов неизбежно влечёт за собой корректировку в развертывании содержания конкретных учебных дисциплин, способов их преподав ...
Констатирующий срез
Цель первого этапа – убедить учащихся в том, что уровень сформированности пространственного воображения школьников не достаточно высокий. Психолого–педагогический и дидактико–методический анализ работ Е.Г.Ананьева, Г.Г.Глейзера, В.П.Зинченко, Е.Н.Кабановой – Миллер, И.Н. Каплуновича, Л.Купера, К. Робинса, И.Рока, И.С. Якиманской, Л.Л.Яко ...