I вариант
1. Через вершины параллелограмма ABCD, лежащего в одной из двух параллельных плоскостей, проведены параллельные прямые, пересекающие вторую плоскость в точках А1, В1, С1 и D1. Докажите, что четырехугольник А1В1С1D1 тоже параллелограмм (рис. 43).
Решение: АА1 = DD1 = СС1 = ВВ1 (отрезки параллельных прямых, заключенные между параллельными плоскостями, равны). Попарно параллельные прямые задают параллелограммы (задание плоскости через параллельные прямые), следовательно D1А1 || DА || СВ || С1В1. По определению А1В1С1D1 параллелограмм.
2. Докажите, что через любую из скрещивающихся прямых можно провести плоскость, параллельную другой прямой (модификация задачи 2.14).
3. Даны две параллельные плоскости, точка вне этих плоскостей и окружность в одной из этих плоскостей (рис. 44). Через каждую точку Х окружности и данную точку проводится прямая, пересекающая вторую плоскость в некоторой точке Х1. Что представляет собой геометрическое место точек Х1?
Решение: Заметим, что при данном преобразовании расстояние между точками изменяется в одно и тоже число раз (рассмотрение двух пересекающихся прямых и обобщение на множество прямых, обладающих данным свойством). Данный факт и указанный способ преобразования дает основание считать, что геометрическим местом точек Х1 является окружность, гомотетичная данной, с коэффициентом гомотетии .
II вариант
1. Докажите, что если четыре прямые, проходящие через точку А, пересекает плоскость α в вершинах параллелограмма, то они пересекают любую плоскость, параллельную α и не проходящую через А, тоже в вершинах параллелограмма (рис. 45).
Решение: Используется метод, подобный задаче 1 I варианта. Указание: Две пересекающиеся прямые задают плоскость – параллелограмм, в котором они являются диагоналями.
2. Точки А, В, С и D не лежат в одной плоскости. Докажите, что прямая, проходящая через середины отрезков АВ и ВС, параллельна прямой, проходящей через середины отрезков AD и CD (пример 9).
3. Даны две параллельные плоскости, пересекающая их прямая и окружность в одной из плоскостей (рис. 46). Через каждую точку Х окружности проводится прямая, параллельная данной прямой и пересекающая вторую плоскость в некоторой точке Х1. Что представляет собой геометрическое место точек Х1?
Решение: Аналогично задаче 3 I варианта, но с применением подобия фигур.
Дидактические материалы разрабатывались в соответствии с показателями, характеризующими пространственное мышление. По своему содержанию:
Обеспечивали выявление не только конечного результата выполнения задания, но и процесса его достижения; при этом были довольно краткими, не требовали для своего решения больших временных затрат;
Составлялись на различном графическом материале и предполагали в основном оперирование формой, величиной изображаемых объектов, их пространственным положением.
Использование этого материала позволяет наиболее адекватно характеризовать пространственное мышление по интересующим показателям и вместе с тем сделать эти задания учебными по содержанию. Задания включают все основные типы оперирования, описанные в работе, и составляют определенный ряд, восходящий от простых преобразований с опорой на восприятие ко все более сложным, осуществляемым в уме, что определяло и порядок их предъявления. При этом учитывался характер графической основы, степень ее обобщенности, условности.
Аппликация как средство эстетического воспитания
Увлечение аппликацией помогает развить наблюдательность, предполагает разные знания. Ведь для того, чтобы сделать, например, птичку или животное в технике аппликации необходимо знать их форму, повадки и манеру двигаться, иначе собака не будет похожа на собаку, а воробей на воробья. Если этого не сделать, то, скорее всего, работа не даст ...
Описание формирующего эксперимента и интерпретация
его результатов
С целью определения эффективности театральной деятельности в ходе ликвидации излишней застенчивости у младших школьников, нами была проведена серия театрализованных занятий, направленных на формирование сценической речи, пластической выразительности, творческой деятельности, навыков коллективной работы. В Приложении 1 приведены сценарии ...