Пусть - произвольное вещественное число. Определим общую степенную функцию
Из определения степенной функции следует, что при она представляет собой возрастающую, а при убывающую функцию.
Рассмотрим предельное значение степенной функции при . Докажем, что
Действительно, пусть - любая сходящаяся к нулю справа последовательность значений аргумента . Так как , то из свойств показательной функции вытекает, что при и при . Естественно положить теперь при и считать это выражение неопределенным при .
Докажем непрерывность степенной функции в любой точке положительной бесконечной полупрямой . Для этого достаточно установить, что эта функция непрерывна в каждой точке указанной полупрямой слева и справа. Докажем, например, непрерывность этой функции в точке слева (непрерывность справа доказывается аналогично). При этом ради определённости будем считать . Обратимся к формуле . Пусть - любая сходящаяся слева к последовательность значений аргумента степенной функции, так что . Так как логарифмическая функция непрерывна, то последовательность где , сходится к , причем, все элементы отличны от (в самом деле, поскольку при логарифмическая функция возрастает, то справедливо неравенство ). В силу непрерывности показательной функции последовательность сходится к . Иными словами, последовательность, представляющая собой последовательность значений степенной функции, соответствующую последовательности , сходится к , то есть, к . Непрерывность степенной функции в точке слева доказана. Аналогично доказывается непрерывность этой функции в точке справа. Но непрерывность функции в точке слева и справа означает, что функция непрерывна в этой точке. Отметим, что если , то степенная функция непрерывна также и в точке .
Отметим, что если показатель степенной функции представляет собой рациональное число , где - нечетное целое число, то степенную функцию можно определить на всей числовой оси, полагая для , если и , четное,
Психолого-педагогическая характеристика дошкольников с общим недоразвитием
речи
Общее недоразвитие речи представляет собой различные сложные речевые расстройства, при которых у детей нарушено формирование всех компонентов речевой системы, относящихся к её звуковой и смысловой стороне, при нормальном слухе и интеллекте. Такое определение было дано в результате многоаспектных исследований различных форм речевой патоло ...
Предупреждение орфографических ошибок в письменных работах учащихся
В методике орфографии имеется два понимания сущности предупреждения ошибок : предупреждает их появление вся система работы по орфографии и непосредственное предупреждение ошибок в отдельных слова перед выполнением тех или иных письменных упражнений. Специальная работа по предупреждению орфографических ошибок имеет две формы: самоконтроль ...