Психологические барьеры в обучении школьников математике

Страница 8

После решения задач учащиеся сравнивают, каким действием решается та или другая задача: одна сложением, другая умножением, а затем сопоставляют способы решения с различиями в условиях задач. Такое сопоставление помогает учащимся лучше осознать смысл выражений "больше на несколько единиц" и "больше в несколько раз" и прочнее установить связь между условием каждой задачи и способом её решения.

Сравнение основано на анализе и синтезе: необходимо расчленить каждую задачу на составляющие её элементы, а затем мысленно соединить сходные элементы, выделив при этом существенные различия.

При объяснении учащимся новой для них по способам решения задачи с многозначными числами часто используется приём аналогии: учитель предлагает решить аналогичную задачу с небольшими числами, вычисления над которыми можно выполнить устно.

Используя в обучении математике различные методы, учитель применяет их так, чтобы они содействовали активизации мышления учащихся, и тем самым способствовали его развитию.

Одним из эффективных средств преодоления психологических барьеров учащихся является решение математических задач. Математические задачи отражают различные стороны жизни, несут много полезной информации, поэтому их решение является одним из звеньев в системе воспитания вообще, патриотического, нравственного и трудового в частности.

Хорошо подобранные и правильно методически расположенные задачи помогают ученику усвоить теоретический материал, делают курс математики более интересным, вызывают потребность в новых знаниях и умении самостоятельно их приобретать. Приступая к решению задачи, ученик сначала знакомится с ее формулировкой, решение же пока остается вне поля его деятельности. Поэтому очень важно, чтобы содержание задачи вызывало живой интерес. Полезно, когда тексты задач обращены не только к уму, но и к эмоциям детей, вызывая у них чувство причастности к решению актуальных проблем, стоящих перед нашей страной. При этом воспитательное воздействие содержания задач осуществляется не только через условие задачи, но и непроизвольно, через подтекст материала. С усвоением любой информации связано формирование отношения к ней. Отсюда понятно значение содержания решаемой задачи.

Учебная работа школьников на уроках математики, наряду с рассмотренными направлениями усиления воспитательной направленности школьного обучения, также очень важна. Необходимость убедительной аргументации по ходу решения задач способствует развитию таких волевых качеств, как настойчивость, самостоятельное преодоление трудностей, критическое отношение к себе и к окружающему. Поиски и нахождение самостоятельных путей решения задач и доказательства теорем способствуют развитию творческого подхода к выполняемой работе, духа новаторства. Поэтому учащиеся не должны выступать на уроках в роли пассивных слушателей. На уроке должны использоваться разнообразные виды самостоятельной учебной работы, рациональные приемы учебы. Такая организация обучения математике способствует пониманию того, что смысл жизни человека состоит в труде, что только творческий труд дает удовлетворение всегда, будь то деятельность ученого или ученика.

Тексты задач должны не только давать материал для ума, но и вызывать у детей чувство сопричастности к текущим событиям, желание преодолевать трудности. Однако в учебных пособиях число задач, действующих на эмоции ученика, создающих проблемную ситуацию, невелико.

В процессе решения математических задач учащиеся усваивают конкретный смысл арифметических действий, знакомятся со знаками для записи выполняемых действий; изучаемые правила сразу же подтверждаются в решении задач. Такие задачи предусмотрены программой каждого года обучения. В школе невозможно рассматривать все виды математических задач. Сколько бы задач ни решали в школе, всё равно учащиеся в своей будущей работе встретятся с новыми видами задач. Поэтому школа должна вооружать учащихся общим подходом к решению любых задач.

Система в подборе задач и расположении их по времени построена с таким расчетом, чтобы обеспечить наиболее благоприятные условия для сопоставления, сравнения, противопоставления задач, сходных в том или ином отношении, а также задач взаимно обратных. При этом имеется в виду, что в процессе изучения математики дети все время будут встречаться с задачами различных видов. Это исключает возможность выработки штампов и натаскивания в решении задач: дети с самого начала будут поставлены перед необходимостью каждый раз производить анализ задачи, устанавливая связь между данными и искомым, прежде чем выбрать то или иное действие для ее решения.

Страницы: 3 4 5 6 7 8 9


Виды одаренности
Систематизация видов одаренности определяется критерием, положенным в основу классификации. В одаренности можно выделить как качественный, так и количественный аспекты. Качественные характеристики одаренности выражают специфику психических возможностей человека и особенности их проявления в тех или иных видах деятельности. Количественные ...

Содержание и условия учебной экспериментальной работы
Основным способом и средством достижения конечных целей обучения иностранному языку является учебная иноязычная деятельность, осуществляемая главным образом на уроке. Вот почему изучив различные классификации видов чтения, разработанные методистами и психологами, сделав собственные выводы, убедившись в неоспоримой значимости чтения, как ...

Разделы

Copyright © 2024 - All Rights Reserved - www.proeducator.ru