При анализе решения задачи полезно сопоставить решение данной задачи с ранее решенными, установить возможность ее обобщения.
Очевидно, что учитель должен постоянно помнить, что решение задач является средством обучения. Обсуждение найденного решения, поиск других способов решения, закрепление в памяти тех приемов, которые были использованы, выявление условий возможности применения этих приемов, обобщение данной задачи – все это дает возможность школьникам учиться на задаче.
Именно через задачи учащиеся могут узнать и глубоко усвоить новые математические факты, овладеть новыми математическими методами, накопить определенный опыт, сформировать умения самостоятельно, и творчески применять полученные знания.
Поэтому уже в младших классах школы при обучении математике (да и другим предметам) надо учить школьников наблюдениям, прививать им навыки исследовательской творческой работы, которые могут пригодиться в дальнейшем, какой бы вид деятельности они не избрали после окончания школы.
При отыскании различных способов решения задач у школьников формируется познавательный интерес, развиваются творческие способности, вырабатываются исследовательские навыки. После нахождения очередного метода решения задачи учащийся, как правило, получает большое моральное удовлетворение. Учителю, важно поощрять учащихся поиск различных способов решения задач, а не стремиться навязывать свое решение. Общие методы решения задач должны стать прочным достоянием учащихся, но наряду с этим необходимо воспитывать у них умение использовать индивидуальные особенности каждой задачи, позволяющие решить ее проще. Именно отход от шаблона, конкретный анализ условий задачи являются залогом успешного ее решения.
Особое внимание, следует обратить на решение задач арифметическим способом, так как именно решение задач арифметическим способом способствует развитию оригинальности мышления, изобретательности.
Часто учащиеся, ознакомившись со способом решения задач с помощью уравнения, не обременяют себя глубоким анализом условия задачи, стараются побыстрее составить уравнение и перейти к его решению. При этом и введение обозначений, и схема решений, как правило, соответствуют определенному шаблону.
В этом случае задача учителя – показать учащимся на примерах, что решение задач по шаблону часто приводит к значительному увеличению объема работы, а иногда и к усложнению решения, в результате чего увеличивается возможность появления ошибок. Поэтому учащимся полезно предложить, прежде чем составлять уравнение для решения задачи, внимательно изучить условие задачи, подумать над тем, какой способ решения наиболее соответствует ее условию, попытаться решить задачу без использования уравнений, арифметическим способом.
Широко распространено мнение, что решение задач повышенной трудности арифметическими методами излишне ввиду существования метода решения задач с помощью составления уравнения.
Существует и другое мнение, опирающееся на наблюдения за учащимися, согласно которому решение задач только алгебраическим методом ведет к одностороннему математическому развитию учащихся. Следует учитывать и то, что для составления уравнения следует использовать определенные арифметические навыки, понимание зависимостей между величинами. Кроме того, существует ряд задач, решение которых арифметическими методами проще, чем с помощью уравнений.
Арифметический способ решения задач, когда шаблонный метод не легко приводит к результату, является, как свидетельствуют наблюдения, одним из лучших средств развития самостоятельного, творческого решения учащихся. С помощью специально подобранных задач, которые могут заинтересовать учащихся своей кажущейся простотой и тем, что их решение не сразу дается в руки, можно показать учащимся красоту, простоту и изящество логического рассуждения, приводящего к решению задачи. Рассматривая решение задач несколькими способами, учитель на уроке и во внеклассной работе должен ориентировать учащихся на поиски красивых, изящных решений. Тем самым учитель будет способствовать эстетическому воспитанию учащихся и повышению их математической культуры.
Решая с учащимися ту или иную задачу, учитель должен стремиться к достижению двух целей. Первая – помочь ученику решить именно данную задачу, научить его решать задачи, аналогичные рассматриваемой; вторая – так развить способности ученика, чтобы он мог в будущем решить любую задачу школьного курса самостоятельно. Эти две цели, безусловно, связаны между собой, так как, справившись с заданной достаточно трудной для него задачей, учащийся несколько развивает свои способности к решению задач вообще.
Отметим, что частое использование одного и того же метода при решении задач иногда приводит к привычке, которая становится вредной. У решающего задачу ученика вырабатывается склонность к так называемой психологической инерции. Поэтому, как бы ни казался учащимся простым найденный способ решения задачи, всегда полезно попытаться найти другой способ решения, который обогатит опыт решающего задачу. Кроме того, в некоторых случаях, получение того же результата другим способом служит лучшей проверкой правильности результата.
Анализ понятия методология
Некоторые исследователи считают методологию учением о структуре, логической организации, методах и средствах теоретической деятельности, другие – о принципах и процедурах формирования и применения методов познания и преобразования действительности; третьи – о совокупности наиболее общих принципов решения сложных практических задач, о мет ...
Широта оперирования геометрическим образом и полнота образа
Представим, что учащийся хорошо выполняет преобразования по тому или иному типу. Чтобы убедиться в том, что данный тип оперирования для него не случаен, необходимо проверить его устойчивость, т. е. возможность выполнять данные преобразования на различном графическом материале. В этих целях используется такой показатель, как широта оперир ...