Учитель должен уметь находить интересные для учащихся задачи и своевременно предлагать их. Приведем примеры.
Конечно, нельзя приучать учащихся решать только те задачи, которые вызывают у них интерес. Так же нельзя забывать, что такие задачи учащийся решает легче и свой интерес к решению одной или нескольких задач он может в дальнейшем перенести и на "скучные" разделы, неизбежные при изучении любого предмета, в том числе и математики. И можно будет достигнуть полного преодоления психологических барьеров.
Таким образом, учитель, желающий научить школьников решать задачи, должен вызвать у них интерес к задаче.
Задачи не должны быть слишком легкими, но и не должны быть слишком трудными, так как учащиеся, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. Не следует предлагать учащимся задачу, если нет уверенности, что они смогут ее решить.
Ну а как же помочь учащемуся научиться решать задачи, если интерес к решению задач у него есть, и трудности решения его не пугают? В чем должна заключаться помощь учителя ученику, не сумевшего решить интересную для него задачу? Как эффективным образом направить усилия ученика, затрудняющегося самостоятельно начать или продолжить решение задачи?
Не следует идти по самому легкому в этом случае пути – познакомить ученика с готовым решением. Не следует и подсказывать, к какому разделу школьного курса математики относится предложенная задача, какие известные учащимся свойства и теоремы нужно применить при решении.
Решение нестандартной задачи – очень сложный процесс, для успешного осуществления которого учащийся должен уметь думать, догадываться. Необходимо также хорошее знание фактического материала, владение общими подходами к решению задач, опыт в решении нестандартных задач.
В процессе решения каждой задачи и ученику, решающему задачу, и учителю, обучающему решению задач, целесообразно четко разделять четыре этапа:
1) изучение условия задачи;
2) поиск плана решения и его составление;
3) осуществление плана, то есть оформление найденного решения;
4) изучение полученного решения – критический анализ результата решения и отбор полезной информации.
Даже при решении несложной задачи учащиеся много времени тратят на рассуждения о том, за что взяться, с чего начать. Чтобы помочь учащимся найти путь к решению задач, учитель должен уметь поставить себя на место решающего задачу, попытаться увидеть и понять источник его возможных затруднений, направить его усилия в наиболее естественное русло. Умелая помощь ученику, оставляющая ему разумную долю самостоятельной работы, позволит учащемуся развить математические способности, накопить опыт, который в дальнейшем поможет находить путь к решению новых задач.
"Лучшее, что может сделать учитель для учащегося, состоит в том, чтобы путем неназойливой помощи подсказать ему блестящую идею… Хорошие идеи имеют своим источником прошлый опыт и ранее приобретенные знания. Таким образом, хорошим средством обучения решению задач, средством для нахождения плана решения являются вспомогательные задачи. Умение подбирать вспомогательные задачи свидетельствует о том, что учащийся уже владеет определенным запасом различных приемов решения задач. Если этот запас не велик (что вполне очевидно для учащихся 5-6 классов), то учитель, видя затруднения учащегося, должен сам предложить вспомогательные задачи. Умело поставленные вспомогательные вопросы, вспомогательная задача или система вспомогательных задач помогут понять идею решения. Необходимо стремиться к тому, чтобы учащийся испытал радость от решения трудной для него задачи, полученного с помощью вспомогательных задач или наводящих вопросов, предложенных учителем.
Безусловно, учащихся следует приучать самим составлять вспомогательные задачи, или упрощать условия предложенных задач так, чтобы без помощи учителя найти способы их решения.
Умение находить вспомогательные задачи, как и вообще умение решать задачи, приобретается практикой. Предлагая учащимся задачу, следует посоветовать выяснить, нельзя ли найти связь между данной задачей и какой-нибудь задачей с известным решением или с задачей, решающейся проще.
Для приобретения навыков решения довольно сложных задач нужно приучать школьников больше внимания уделять изучению полученного решения. Для этого можно предлагать учащимся видоизменять условия задачи, чтобы закрепить способ ее решения, придумывать задачи аналогичные решенным, более или менее трудные, с использованием найденного при решении основной задачи способа решения.
Систематическая работа по изучению способов решения задач помогает учащимся не только научиться решать задачи, но и самим их составлять.
Конструирование задач – интересное занятие, один из верных способов решать задачи.
Умение учащихся составлять нестандартные задачи, решаемые нестандартными способами, свидетельствует о культуре их мышления, хорошо развитых математических способностях.
Различные подходы к определению творческих
способностей
В современной психологической науке выделяют три основных подхода к определению творческих способностей. 1. Как таковых творческих способностей нет. Интеллектуальная одаренность выступает в качестве необходимого, но недостаточного условия творческой активности личности. Главную роль в детерминации творческого поведения играют мотивы, цен ...
Условия
и средства эстетического воспитания
Эстетическое воспитание дошкольников - организация жизни и деятельности детей, способствующая развитию эстетических чувств ребенка, формированию представлений и знаний о прекрасном в жизни и искусстве, эстетических оценок и эстетического отношения со всему, что нас окружает. Эстетическое воспитание дошкольников неразрывно связано с воспи ...